
Atlas of the Bazaar
Set up your environment
Bazaar Demo for Moodle: Download http://ankara.lti.cs.cmu.edu/bazaar/FancyAgentDemo.zip
and unzip it somewhere nice. !
Java: You’ll need Java 6 or 7 installed to run Bazaar. !
A Decent Text Editor: You’ll be editing several plain-text and XML files.
YOUR LIFE WILL BE BETTER IF YOU NEVER USE NOTEPAD EVER AGAIN.
Use an XML-aware editor, like Notepad++ for Windows, or SubEthaEdit or TextWrangler for Mac OS X. !
Moodle: The Moodle chat client has been tested with Moodle 2.5 and 2.6, using a MAMP installation.
In Moodle, create a user that your agent will impersonate. To configure the client for your Moodle, edit the file
MoodleTalkAgent/properties/MoodleChatClient.properties - it’s got lots of comments explaining what’s what. Besides your
agent’s username, you’ll need to reference your Moodle installation’s chat.php file for additional settings — mine is in
htdocs/moodle25/config.php !
Try it out 

!
- Double-click FancyAgentDemo.jar in the FancyAgentDemo folder.  !
- The “Conditions” checkboxes turn certain agent behaviors on and off:  

turn on “tutorial_trigger”, “social”, and “revoice” for now. !
- Enter the name you’d like for your chat room in the “Room Name” field, then press “Start Agent”!  !
- Join your chat room on the web: http://conversation.lti.cs.cmu.edu:8000/chat/FancyBazaar01  

(replace “FancyBazaar01” with the name of your room)  !
- The macro-script should start once you join. If it doesn’t, you can press the “Wizard” button in the Bazaar Agent UI and

then press the “Launch Script” button in the wizard interface.  !
- Interact with the example agent - its macro-script highlights several of the behaviors you’ll be able to customize.  !
- Note that sometimes the Moodle chat doesn’t refresh in a consistent way - if you don’t see an agent response, you may

need to refresh the window manually.  

http://ankara.lti.cs.cmu.edu/bazaar/FancyAgentDemo.zip
http://conversation.lti.cs.cmu.edu:8000/chat/FancyBazaar01

What’s Inside?
MoodleTalkAgent/ contents, organized in order of the likelihood of your needing to do something with it.

!
!

File What’s Inside What You Might Change

FancyAgentDemo.jar This is the double-clickable agent
launcher. If it doesn’t double-click, try
“java -jar FancyAgentDemo.jar” from a
command-line terminal.

Chatroom name, active conditions. You can
also wizard-of-oz tutor behavior, or pretend to
be a student user.

properties/ Most of the “settings” are in here. Behavior timing, priorities, and pointers to
content files. “operation.properties” in
particular controls several high-level agent
settings worth investigating. Most properties
files are thoroughly documented.

plans/ Macro-scripts and prompt files Scripts! Sequencing and phrasing.

dialogues/ XML files defining each tutorial
dialogue, and an “index” (dialogue-
examples) that determines how the
tutorials are triggered

Dialogue content, sequencing, and triggering.
The example “animals” dialogue is heavily
commented for your learning pleasure.

dictionaries/ Files (in nested folders) with word and
regular expression lists that are used to
“annotate” each student turn. The
filename becomes the (ALL CAPS)
annotation name.

Add or edit annotation dictionaries to support
other behaviors (annotations are used to trigger
tutorials, mitigate AT responses, etc)

accountable/ Accountable talk data and prompt files Replace the contents of exemplar_statements
and content_synonyms with something domain
appropriate, rephrase the AT prompts

agent.xml Architectural configuration - high-level
agent pipeline stuff.

Agent name. You can also swap out the
MoodleChatClient for the DummyClient (and
operate only through the agent wizard), if you
don’t want to deal with Moodle.

logs/ Annotated chat transcripts and also
less useful logs.

take a look, if you like!

dict/ WordNet data files - used by the
Accountable Talk behaviors.

nothing!

planstatus/ Keeps track of a macro-script in
progress.

You might delete the contents of this folder to
avoid “a plan is already in progress” messages.

behaviors/ Leftover behavior logging. Research
code artefact.

nothing!

log.properties Logger configuration. Research code
artefact.

nothing!

Accountable Talk Behaviors
The four included Accountable Talk facilitation behaviors are Revoice, Agree-Disagree, Say More, and Ask for Explanation.
All four work on the same principle - identify a candidate student statement by making a fuzzy match against a list of
“exemplar” sentences, wait to see if students follow up on their own, and follow up with a facilitation move if they don’t.
Exactly what counts as a candidate or a followup statement is controlled by the properties files for each behavior.
 

!
Social Support
This behavior implements “Balesian” social support strategies for group cohesion, using some handcrafted rules to
notice and respond to various individual and group behaviors. There are two conditions mapping to this module, social
for a broad set of supportive responses to student turns, and participation for nudges when the system notices an
individual or group of students isn’t actively participating. !

File Description

accountable/accountable_prompts.xml Response variations for each facilitation behavior.

accountable/exemplar_statements.txt List of sentences that would count as candidates.  
It’s possible to have a different list for each behavior.

accountable/content_synonyms.txt Sets of domain-specific content words and synonyms (upweighted
in statement matching). One set per line.

accountable/synonyms.txt Supplemental sets of domain-general synonyms.  
One synonym set per line.

accountable/stopwords.txt List of “common” English words  
(downweighted in statement matching)

properties/AgreeDisagreeActor.properties Configure the Agree-Disagree behavior.  
Nicely documented!

properties/AskForExplanationActor.properties Configure the Explain-to-Others behavior. 
Nicely documented!

properties/RevoiceActor.properties Configure the Revoicing behavior. 
Nicely documented!

properties/SayMoreActor.properties Configure the Say More behavior. 
Nicely documented!

File Description

plans/social_prompts.xml Response variations for the various social supports.

properties/
RuleBasedTriggerComputer.properties

Specifies the “social threshold” for how frequently the system
should act on the social cues it notices.

properties/SocialController.properties Defines the priority and timing of social moves.

Macro-Script
The PlanExecutor delivers a more-or-less timed sequence of steps, starting when a Launch Event is received - either when
enough students have joined the room, or when a timeout has expired. You can also start the script manually from the
wizard UI. Each step “type” is controlled by a different Step Handler. !
Every step can have a “delay” or “timeout” attribute. “Delay” is how long to wait after the step completes on its own
before beginning the next step. “Timeout” is how long to wait before cutting off the step and beginning the next step. See
plans/plan_steps.xml for a documented example. !

!

Step Type Description Attributes

prompt Deliver a prompt. There’s a built-in delay related to the
length of the prompt, to allow time for reading. Additional
delay may be specified with the “delay” attribute.

prompt=“NAME OF PROMPT”  
(from the PromptHandler’s prompt_file)

greet Take time for introductions. If students give themselves a
name, the agent can use that name throughout the session.

timeout=seconds  
(this is the maximum duration of the
greet step - also redundantly specified in
the IntroductionsHandler.properties file)

dialogue Launch a dialogue, even if the tutorial-triggering condition is
not set.

dialogue=“NAME_OF_DIALOGUE” 
(from dialogues/dialogues-example.xml)

listen Temporarily activate the full suite of Accountable Talk and
Social behaviors (the corresponding condition checkboxes
must be checked). Useful if you don’t want AT facilitation all
the time - remove the AT actors from operation.properties if
this is the case.

timeout=seconds  
(this is the duration of the listening step)

File Description

plans/plan_prompts.xml Text (and variations) for each named prompt.

plans/plan_steps.xml List of sentences that would count as candidates.  
It’s possible to have a different list for each behavior.

properties/PlanExecutor.properties Sets of domain-specific content words and synonyms (upweighted
in statement matching). One set per line.

properties/PresenceWatcher.properties Supplemental sets of domain-general synonyms.  
One synonym set per line.

properties/PromptStepHandler.properties Specifies the prompt file from which prompt-step prompts are
drawn, and also the words-per-minute delay after prompt steps.

properties/IntroductionsHandler.properties Specifies the prompt file for introductions, and also the maximum
duration of a greet step.

Tutorial Dialogues
TuTalk is an early PSLC project, specifying a rich and feature-full hierarchical dialogue system. Bazaar implements a
limited variant of the TuTalk specification. While originally designed for two-party dialogue, we’ve used such scripts
successfully for collaborative learning in previous studies. !
The three big ideas in a TuTalk script are Concepts, Goals, and Steps. A Concept represents something that a student
might say, or that the dialogue system might say in response. For tutor turns, these are usually lists of phrases, from
which the system will choose randomly. For student turns, a concept can be either a list of literal phrases (matched
within a student turn), or of regular expression patterns, or a list of annotations provided by the Bazaar Message
Annotator (via the wordlists and patterns in the dictionaries/ folder). !
A dialogue Goal is a set of steps completed in sequence. Each step is composed of an initiation concept, which is
something the student might say, and an optional set of response options. Each response option specifies a student
concept between the <response> tags. The first concept to be matched will be activated, triggering a tutor response (a
concept specified by the “say” attribute) and/or pushing a new goal into the dialogue system (with the “push” attribute,
putting the current goal on hold until the sub-goal is completed). Goals should not recursively refer to themselves. Here’s
an example from dialogues/scenario-animal.xml: !
<step>
 <!-- Every step begins with an initiating concept or literal phrase -->
 <initiation>animal_question</initiation>

 <!-- These are the "response" options. The response’s say/push is triggered
 for the first student concept (between the tags) that matches. -—>
 <response say="recognize_fish">fish</response>
 <response say="recognize_bird">bird</response>
 <response say="recognize_mammal">mammal</response> !
 <!-- unanticipated-response is anything that doesn't match one of the above. -->
 <response push="remediate_goal" say= "unrecognized">unanticipated-response</response>
</step> !
Launching Dialogues
All the available dialogues must be listed in dialogues/example-dialogues.xml. A dialogue can be started either
automatically, in response to a student statement, or as part of a macro-script (see previous section). A dialogue is
started automatically when the tutorial_trigger condition is active and a student statement is annotated (by Message
Annotator, from the lists in dictionaries/) with one of the trigger annotations listed for that dialogue. A dialogue may be
accepted (typically with an AFFIRMATIVE statement) or canceled (with a NEGATIVE statement). If nobody responds, the
dialogue is canceled after a while anyways. !

File Description

properties/TutorActor.properties Controls the wait-for-response timing and some prompt options shared between
dialogues, and points at the dialogue index file.

properties/
TutorialTriggerWatcher.properties

Not much going on - just references the dialogue index file.

dialogues/dialogues-example.xml The dialogue index file, specifying the trigger conditions for each dialogue.

dialogues/scenario-animals.xml A moderately complex and thoroughly commented example.

dialogues/scenario-hugs.xml A simple supportive dialogue example.

dialogues/TuTalkScenario.dtd A document type description that your XML editor might use to “validate” a
TuTalk script, or provide syntax hints.

